

UK NSC Lung Showcase: Modelling

Dr Tristan Snowsill Senior Lecturer in Health Economics

Outline

- Existing lung cancer screening modelling studies
- Exeter model (2022 version)
 - Structure
 - Key inputs
 - Natural history model
- Results
- Discussion

Existing LCS modelling studies

CISNET (Cancer Intervention and Surveillance Modelling Network)

Several lung cancer models developed in CISNET initiative to address lung cancer screening and tobacco control

All include a disease natural history component (substantial variation between)

Used for several comparative modelling assessments

• If models with diverse assumptions agree it suggests robustness

Systematic reviews of standalone studies

Peters JL, Snowsill TM, Griffin E, Robinson S, Hyde CJ. Variations in model-based economic evaluations of low-dose computed tomography screening for lung cancer: a methodological review. Value in Health 2022; 25(4):656-665

Grover H, King W, Bhattarai N, Moloney E, Sharp L, Fuller L. Systematic review of the cost-effectiveness of screening for lung cancer with low dose computed tomography. Lung Cancer 2022; 170:20–33

Over 40 model-based economic evaluations of lung cancer screening

UK-based economic evaluations

Whynes DK. Could CT screening for lung cancer ever be cost effective in the United Kingdom? Cost Eff Resour Alloc 2008; 6(1):5

- Field JK, Duffy SW, Baldwin DR, et al. The UK lung cancer screening trial: a pilot randomised controlled trial of low-dose computed tomography screening for the early detection of lung cancer. Health Technol Assess 2016; 20(40)
- Snowsill T, Yang H, Griffin E, et al. Low-dose computed tomography for lung cancer screening in high-risk populations: a systematic review and economic evaluation. Health Technol Assess 2018; 22(69)
- Hinde S, Crilly T, Balata H, et al. The cost-effectiveness of the Manchester 'lung health checks', a community-based low-dose CT screening pilot. Lung Cancer 2018; 126:119-124

What can we learn from previous CEA?

Non-UK studies will not give us "the answer" as CEA do not generalise easily

But we can learn from them

Natural history components important

Only one UK-based study used natural history component and it had flaws

Exeter model (2022 version)

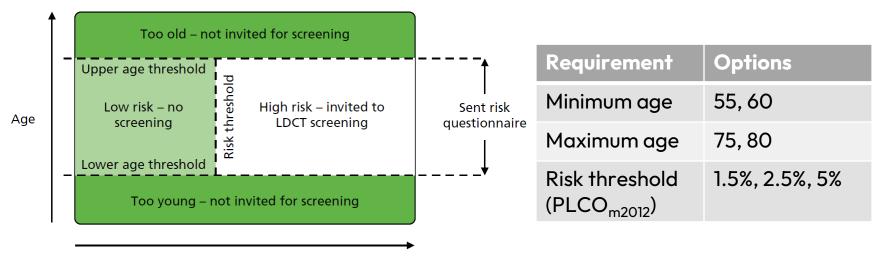
Changes from 2018 version

Parameter updates

- Screening programme admin cost
- •LDCT cost
- Cancer treatment cost
- Effect of cancer on QALY weights

Structure updates

- Separate SCLC and NSCLC
- Cancer stages revised
- •Cancer mortality/survival assumptions revised
- •New natural history model



Model structure

Assumptions encoded in mathematics

Targeted population

Predicted risk of lung cancer

Screening schedules

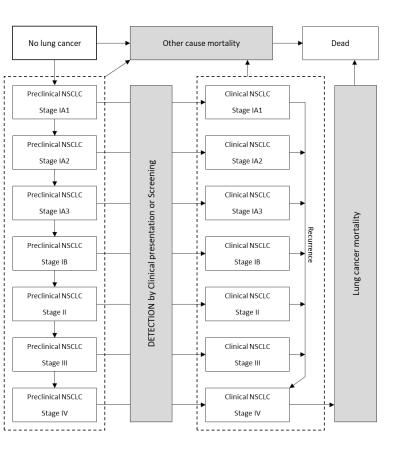
No screening

Single

Triple (0, 12 and 24 months from start)

Biennial to age 80

Annual to age 80


Predicted risk in the model

We model the $PLCO_{m2012}$ predicted risk for the population

Associated with age and smoking status

Smoking status (% of ever smokers aged 55-80)	>1.5%	>2.5%	>5%
Current (22%)	58%	46%	28%
Former (78%)	21%	10%	2%

Health states and events

At any point in time a simulated person is either

- Alive without lung cancer
- Alive with preclinical NSCLC
- Alive with clinical NSCLC
- Alive with preclinical SCLC
- Alive with clinical SCLC

• Dead

Prevalent cancer

- Some people have lung cancer when they first enter screening (prevalent cancer)
- The model includes a prevalent cancer component
- PLCO_{m2012} risk is incorporated (slightly stronger association for SCLC)

Incident cancer

- People who start screening without cancer are at risk of subsequently developing cancer
- We assume they develop no more than one lung cancer
- PLCO_{m2012} risk is incorporated (slightly stronger association for SCLC)

Cancer progression

- Cancer progresses through stages sequentially
- Constant hazard of progression to next stage but
 - Stage dependent
 - Heterogeneity (NSCLC) some cancers progress much slower, some much faster

Cancer clinical detection

- Cancer can be detected outside of screening (i.e., presenting with symptoms, incidental detection)
- Constant hazard of presentation but
 - Stage dependent

Screen-detection

• If a person has lung cancer it will be detected by an LDCT screen with a certain probability (true sensitivity)

- Sensitivity increases as cancer becomes more advanced
- Assumed perfect for metastatic cancer
- If they do not have lung cancer there is a chance of a false positive or indeterminate findings meaning they have one or two follow-up LDCT

Cancer survival

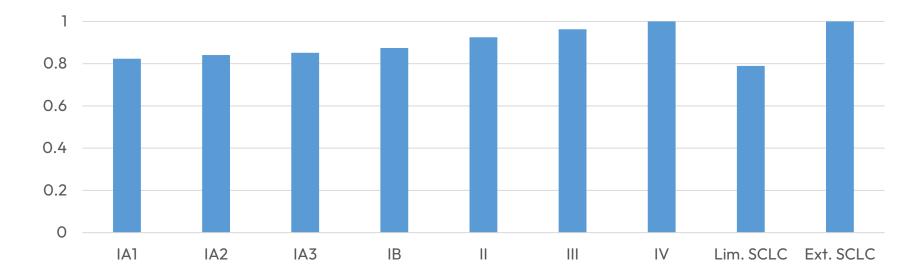
- Modelling cancer survival in screening interventions is tricky
- Observed survival of screen-detected cancers is extremely good
 - Detected in earlier stages than usual
 - Lead time
 - Over-representation of slow-growing cancers
- •We model survival from time of diagnosis according to whether it is
 - Screen-detected
 - Interval
 - Post- / outside screening

Other-cause mortality

An unfortunate consequence of targeting people with a strong smoking history is that they are also more likely to die from other smoking-related disease

This is incorporated in the model, including a relationship between $PLCO_{m2012}$ and the rate of death from other causes

Key inputs



Screening uptake

Parameter	Value
Proportion of those contacted by post about the programme who have PLCO _{m2012} risk assessment (by telephone)	50.8%
Proportion of those eligible after risk assessment who take up screening	83.6%
Adherence to screening (assumed)	100%

LDCT sensitivity

LDCT specificity

False positives

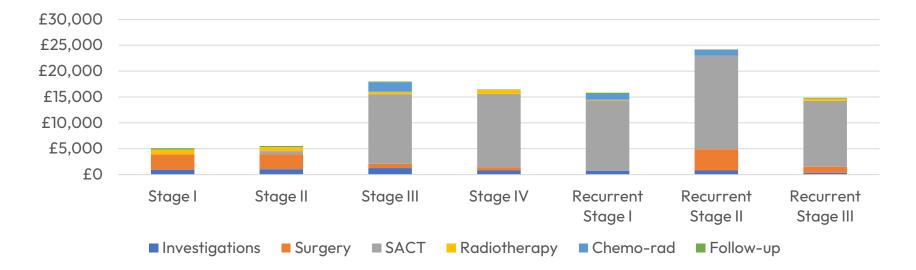
- Definition: a referral to MDT but no cancer
- False positive rate = 0.037 (1 in 27; specificity = 0.963)

Indeterminate result

- Definition: requiring follow up LDCT at 3 and 12 months (or just at 12 months)
- Indeterminate result rate = 0.14 (1 in 7)

Costs

Screening visit


- •Nurse support: £7.75
- •Scan cost: £77.31

Follow-up costs

- Indeterminate nodules: 1× or 2× scan cost
- False positive: £434.47

Costs (lung cancer)

QALY weights

Baseline utilities

•Current/ex-smoker: male 0.820, female 0.791

Modifiers

- Stage II/III NSCLC (post-diagnosis): -0.04
- Stage IV or recurrent NSCLC (pre- and post-diagnosis): -0.05
- Extensive or recurrent SCLC: -0.08

Natural history model

Structure

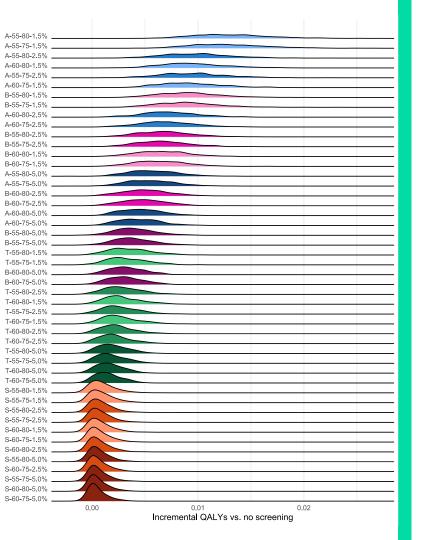
Contains the following from the economic model

- Cancer prevalence
- Cancer incidence
- Cancer presentation
- Cancer progression
- Screen-detection
- •Other-cause mortality

Data source

The natural history model was **calibrated** to patient-level data from the National Lung Screening Trial (NLST)

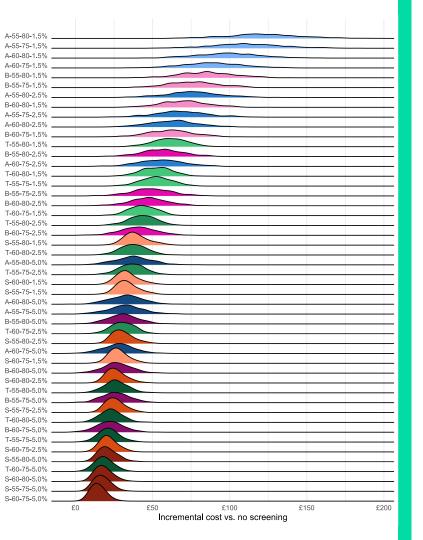
- Largest RCT of lung cancer screening by LDCT (N = 53,454)
- •US-based
- Triple screen plus follow-up


Results

Naming convention

Frequency – Lower age limit – Upper age limit – Risk threshold

E.g., S-55-75-1.5 means a single screen for people aged 55 to 75 with a predicted risk of at least 1.5%

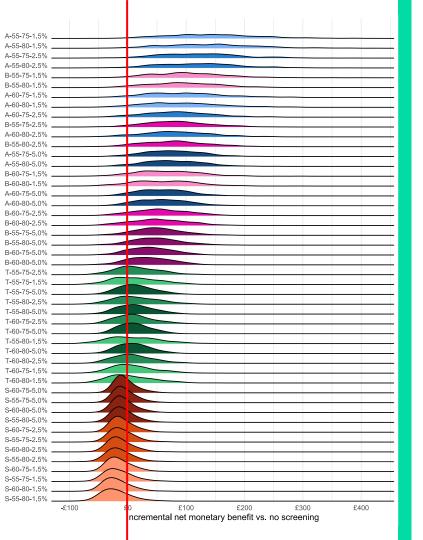


Clinical effectiveness

- Single screen generates very little health benefit
- Triple screen somewhat better
- Maximum health benefit achieved through prolonged regular screening in a broadly targeted population
- Greater benefits are more uncertain

Costs

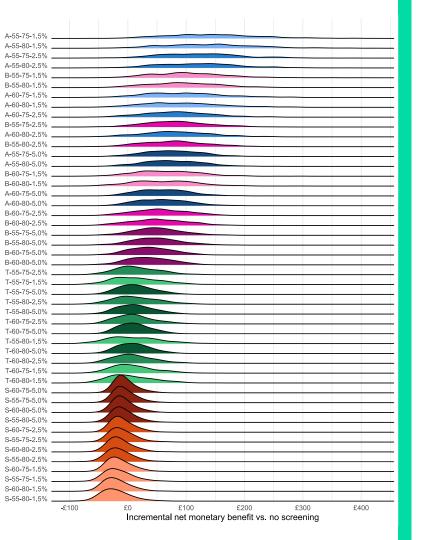
- Screening always increases costs
 - Cost of programme administration
 - Cost of scans (and false positives)
 - Cost of cancer treatment
- Costs can be contained by targeting narrowly and/or keeping the number of screens low


Cost-effectiveness analysis

Cost-effectiveness analyses use a threshold, e.g., £20,000 per QALY

This means that a new technology is cost-effective if it has a ratio of **additional** costs to **additional** QALYs no greater than £20,000 : 1 QALY

If we have more than two technologies being compared it can be a lot easier to look at the **net monetary benefit** – the technology with the highest net monetary benefit is economically optimal

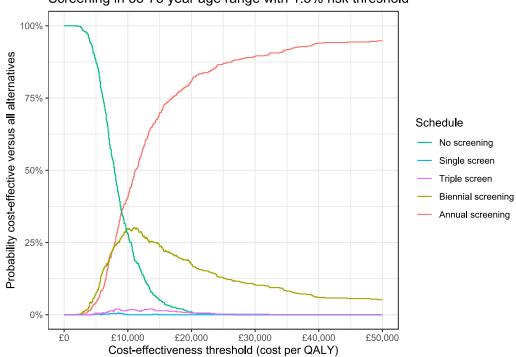


Cost-effectiveness

Compared to no screening

- Single screen is not cost-effective
- Triple screen is possibly cost-effective (at the margin)
- Biennial and annual screen are cost-effective

Cost-effectiveness


Compared to all options

- Annual and biennial strategies are "most costeffective"
- Maximum economic benefit from annual screening in broad population (aged 55-75 years, risk at least 1.5%)

CEAC

Screening in 55-75 year age range with 1.5% risk threshold

A-55-75-1.5% (optimal?)

Life expectancy	+0.257
QALYs	+0.108
Average number of screens	11.4
Average number of false positives	0.4
Lung cancer mortality rate ratio	0.860

Stage distribution

No screening (N = 88) 45 40 35 30 25 20 15 10 5 \mathbf{O} IA1 IA2 IA3 IB IV Non-screen detected

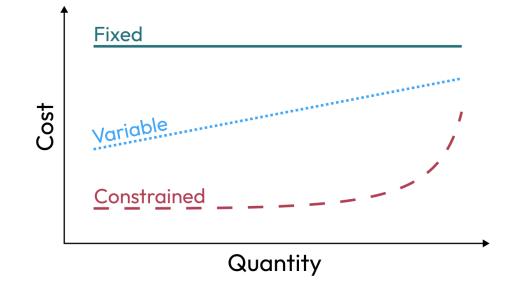
45 40 35 30 25 20 15 10 5 0 IA2 IA3 IV IA1 IB Non-screen detected Screen-detected

Annual screening (N = 110)

Discussion

Annual versus Biennial

Strategy	Costs	QALYs	INMB	ICER
No screening	£1,092	9.795		
Biennial screening	£1,168	9.804	£103	£8,500/QALY
Annual screening	£1,203	9.808	£145	£9,200/QALY



True cost of LDCT

- Is the assumed cost an accurate **accounting cost**?
- Does the accounting cost represent the true **opportunity cost**?
- Is the cost fixed or dependent on quantity?

True cost of LDCT

Time for questions

