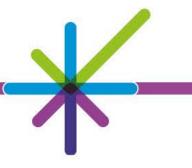
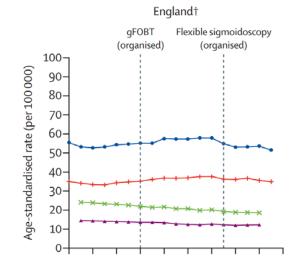
FIT thresholds based on sex

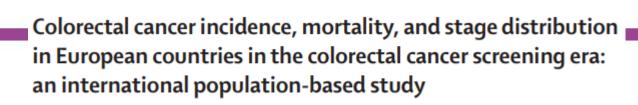
Gavin RC Clark

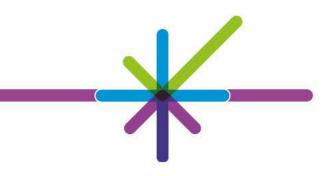
UKNSC - Bowel Cancer Screening - Horizon Scanning



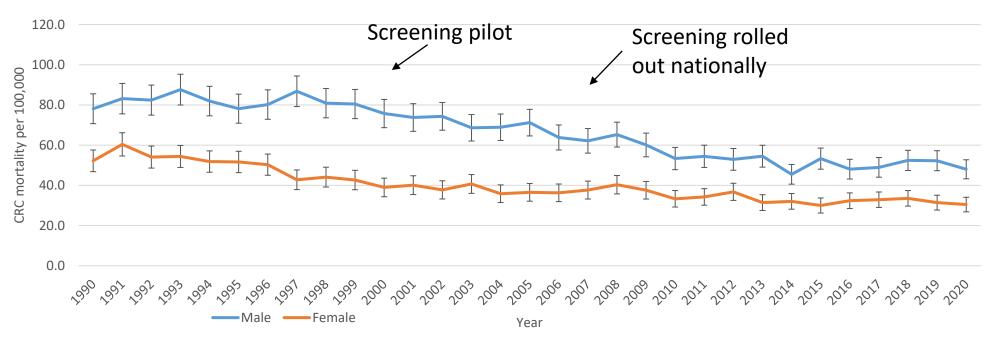
Background


- CRC screening implemented using gFOBT in Scotland:
 - Piloted from 2000 (three screening rounds in three NHS Regions)
 - National roll-out began in 2007, completed 2009
- Implemented on the basis of RCT evidence of a reduction in CRC mortality
- There is evidence that this reduction is not uniform between women and men...




CRC mortality England and Wales

- Mortality data from England and Wales provided as part of European study
- Calculated average annual percentage change (AAPC) in CRC mortality from 2000-2017
- Found a greater reduction in mortality for all age-groups in men (-1.8%, 95% CI: -2.0 to 1.7%) than in women (-1.3%, -1.5 to -1.1%) in the period



CRC mortality in Scotland in screening age range

Age-standardised colorectal cancer mortality for 50-74 year olds, by year and sex

- AAPC for 2000-2020 for 50- to 74-year-olds:
 - All: -1.9%, Women: -1.3%, Men: -2.4%
 - But increases in mortality also seen in women under 50 years, not seen in men

CRC mortality and sex – RCT evidence

- Nottingham RCT showed similar reductions for women and men after 20 years follow-up (Hardcastle, 2012)
- Minnesota RCT showed smaller (statistically non-significant) mortality reduction for women (8%) than for men (37%) for biennial screening after 30 years follow-up (Shaukat, 2013).
 - Pooled analysis of **compliers** in Danish and Minnesota RCT showed reduction of 25% in men, 9% in women, with the latter value non-significant (Shaukat, 2020)
- Finnish gFOBT trial showed mortality reduction in men only (Pitkäniemi, 2015), median follow-up of 4.5 years

Why - test sensitivity?

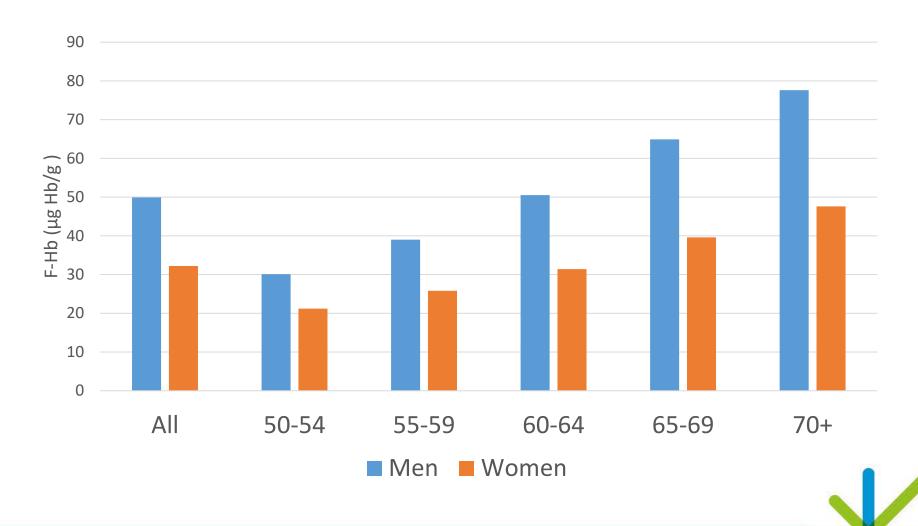
- Gies et al. (2021) evaluated the performance of nine FIT in those undergoing screening colonoscopy
- Lower sensitivity for advanced neoplasia was seen in women than men for all of the nine different manufacturers
- Consistent with prior findings from Brenner (2010) and van Turenhout (2014)

Table 2. Sensitivity and specificity for detection of advanced neoplasia by sex.

FIT Brand	Sensitivity (%)			Specificity (%)				
	Female	Male	Diff.	p	Female	Male	Diff.	p
At original thresholds recommended by the manufacturers								
IDK Hb ELISA	40.5	49.3	-8.8	0.22	90.3	80.7	+9.6	0.02
QuantOn Hem	36.5	48.6	-12.1	0.09	89.0	82.1	+6.9	0.09
immoCARE-C	33.8	41.1	-7.3	0.29	92.9	86.9	+6.0	0.09
CAREprime	28.4	38.0	-9.6	0.16	95.5	86.9	+8.6	0.01
RIDASCREEN Hb	32.4	43.0	-10.6	0.13	94.8	86.2	+8.6	0.01
Eurolyser FOB test	17.6	25.4	-7.8	0.20	98.7	95.2	+3.5	0.09
OC-Sensor	17.6	23.9	-6.3	0.28	99.4	95.9	+3.5	0.08
QuikRead go iFOBT	14.9	25.4	-10.5	0.08	98.7	94.5	+4.2	0.06
SENTIFIT-FOB Gold	17.6	23.9	-6.3	0.28	98.7	93.8	+4.9	0.04
GEE-Model	25.7	34.6	-8.9	0.12	96.2	90.8	+5.4	0.005

Why? Interval cancers and faecal haemoglobin

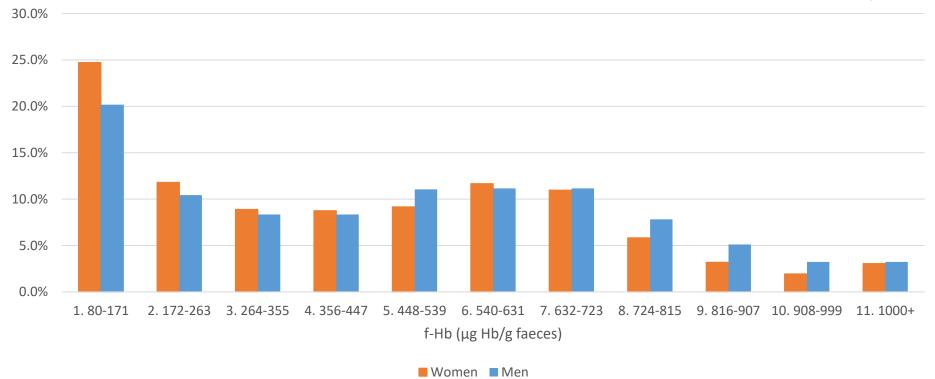
- Interval cancers a cancer diagnosed in the interval following a "negative" screening examination but before the next examination
 - More likely late stage and so poorer outcomes than screen-detected
- In those who participate, a higher proportion of cancers are diagnosed as interval in women than in men (Wieten, 2018)
- Reasons unclear although could relate to:
 - Sex differences in cancer site
 - Type of lesion (sessile serrated lesions)
 - Women in the screening population have lower f-Hb on average, therefore lower positivity and lower cancer detection rate

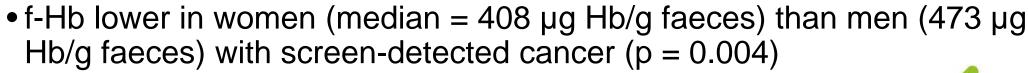


FIT introduction in Scotland

- Evidence for the evolution to Faecal Immunochemical Tests (FIT) was accumulating in 2000s, with advantages including:
 - Improved uptake (one sample rather than two from each of three)
 - Quantitative result (rather than colour change)
 - Customisable faecal haemoglobin concentration threshold
 - Greater sensitivity for CRC and large polyps (threshold-dependent)
 - Similar specificity at same level of test positivity
- Piloted in Scotland 2010 replaced gFOBT in 2017 at a threshold of ≥80 μg Hb/g faeces

f-Hb in screening participants by age and sex





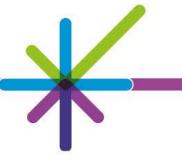
f-Hb in screen-detected CRC

Original Article

Faecal haemoglobin concentrations in women and men diagnosed with colorectal cancer in a national screening programme J Med Science 2022, vol. 29(1) 26–31 © The Author(s) 2028 CHEST Article rates guidelines: support conductorals permission Chest 16, 1779/04/14 (1) 21 1956/079 permits support combinations.

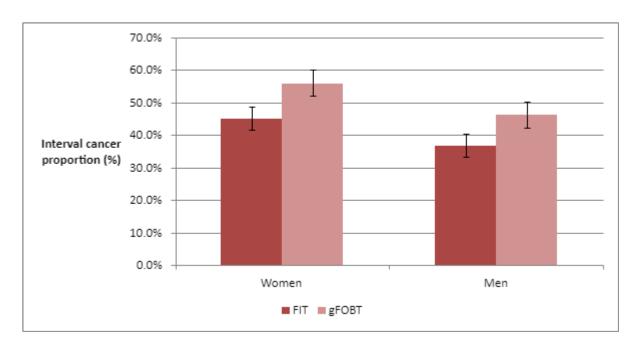
FIT vs. gFOBT – possible solution

 Evidence for the evolution to Faecal Immunochemical Tests (FIT) was accumulating in 2000s, with advantages including:


- Improved uptake (one sample rather than two from each of three)
- Quantitative result (rather than colour change)
- Customisable faecal haemoglobin concentration threshold
- Greater sensitivity for CRC and large polyps (threshold-dependent)
- Similar specificity at same level of test positivity

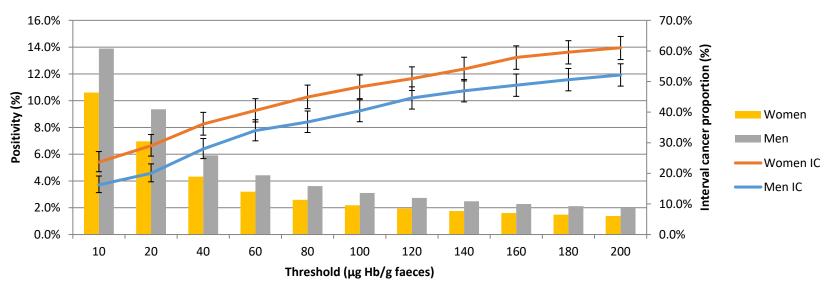
• Piloted in Scotland 2010 - replaced gFOBT in 2017 at a threshold of ≥80 µg Hb/g faeces

How do interval cancer proportions vary by sex and threshold?


Methods

- Scottish Bowel Screening Database collects data nationally on participation and numerical f-Hb concentration
- Scottish Cancer Registry collect information on all colorectal cancers diagnosed
- Linkage with SBSD allowed identification of interval cancers: those diagnosed after a negative FIT result, before the next screening round invite
 - Cohort was those invited from Nov-17 to Oct-18
- Calculated interval cancer proportion: interval cancers as a proportion of all colorectal cancers in participants (i.e. screening and interval cancers combined)

Results



- 1,349 CRC in participants (screening and interval)
- 548 interval cancers, giving ICP of 40.6% with FIT
- ICP was greater in women (45.0%, 95 CI:41.1 to 48.8%) than men (36.8%, 33.3 to 40.4%)

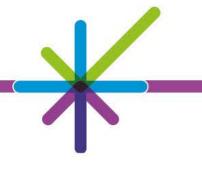
Interval cancer proportion by f-Hb threshold and sex

- Interval cancer proportion is higher for women than men, at every threshold
- Equivalent IC proportion achieved by threshold of ca. 40 μg Hb/g faeces for women while maintaining current >80 μg Hb/g faeces for men
- But positivity increase of ~65% for women increased colonoscopy
 demand

Conclusions

Conclusions

- Scottish data provide further evidence for poorer sensitivity and higher interval cancer proportions in women
- FIT afford the opportunity to address this inequity in ICP/test sensitivity by reducing f-Hb threshold for women to ≥40 µg/g
- However, colonoscopy resource constrained in Scotland
- Furthermore, increase in false positives and complications, reduction in PPV



Experience in other countries

- Sweden and Finland have lower f-Hb thresholds in women than men
- Sweden have f-Hb thresholds of ≥40 µg Hb/g faeces in women and ≥80 µg Hb/g faeces in men, with similar sensitivity between the two groups (Wilen, 2023)
- Finland have thresholds of ≥25 µg Hb/g faeces in women and ≥70 µg Hb/g faeces in men, though no published IC data
 - Similar CRC PPV in women (8.8%) and men (9.0%)
 - Lower advanced adenoma PPV in women (21.3%) than men (34.8%)

Other possible variables

- Alternatives to interval cancer proportion/sensitivity when setting threshold could include:
 - Positivity
 - Positive predictive value
 - Cancer detection rate
 - Risk
- Cost-effectiveness 2018 ScHARR report suggested that ≥20 µg Hb/g faeces is optimal threshold

Acknowledgements

- Professors Bob Steele and Callum Fraser
- The Centre for Research into Cancer Prevention and Screening Group at the University of Dundee
- Public Health Scotland

Questions?

